Solved

On an Exam, Students Were Asked to Evaluate C(x2i+xj)dr\int _ { C } \left( x ^ { 2 } \vec { i } + x \vec { j } \right) \cdot d \vec { r }

Question 44

Essay

On an exam, students were asked to evaluate C(x2i+xj)dr\int _ { C } \left( x ^ { 2 } \vec { i } + x \vec { j } \right) \cdot d \vec { r } , where C has the parameterization x=cost,y=sint,0tπx = \cos t , y = \sin t , 0 \leq t \leq \pi .One student wrote:
"Using Green's Theorem, C(x2i+xj)dr=D(xx(x2)y)dA=D1dA=\int _ { C } \left( x ^ { 2 } \vec { i } + x \vec { j } \right) \cdot d \vec { r } = \int _ { D } \left( \frac { \partial x } { \partial x } - \frac { \partial \left( x ^ { 2 } \right) } { \partial y } \right) d A = \int _ { D } 1 d A = Area of the semi-circle = π2\frac { \pi } { 2 } ."
Do you agree with the student?

Correct Answer:

verifed

Verified

This is wrong.We cannot use Gr...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions