Solved

Consider the Two-Dimensional Vector Field F(x,y)=4yi+2xj\vec { F } ( x , y ) = - 4 y \vec { i } + 2 x \vec { j }

Question 1

Essay

Consider the two-dimensional vector field F(x,y)=4yi+2xj\vec { F } ( x , y ) = - 4 y \vec { i } + 2 x \vec { j } Write down parameterizations of the three line segments C1, C2, and C3 shown in the figure below.  Consider the two-dimensional vector field  \vec { F } ( x , y ) = - 4 y \vec { i } + 2 x \vec { j }  Write down parameterizations of the three line segments C<sub>1</sub>, C<sub>2</sub>, and C<sub>3</sub> shown in the figure below.   Use your parameterizations to compute the line integral  \int _ { C _ { 3 } + C _ { 2 } - C _ { 1 } } \vec { F } \cdot d \vec { r }  by finding  \int_{G_{1}} \vec{F} \cdot d \vec{r}, \int_{C_{2}} \vec{F} \cdot d \vec{r}  and  \int _ { C _ { 3 } } \vec { F } \cdot d \vec { r } Use your parameterizations to compute the line integral C3+C2C1Fdr\int _ { C _ { 3 } + C _ { 2 } - C _ { 1 } } \vec { F } \cdot d \vec { r } by finding G1Fdr,C2Fdr\int_{G_{1}} \vec{F} \cdot d \vec{r}, \int_{C_{2}} \vec{F} \cdot d \vec{r} and C3Fdr\int _ { C _ { 3 } } \vec { F } \cdot d \vec { r }

Correct Answer:

verifed

Verified

Related Questions