Solved

Set Up the Three-Dimensional Integral RydV\int _ { R } y d V

Question 65

Multiple Choice

Set up the three-dimensional integral RydV\int _ { R } y d V where R is the "ice-cream cone" enclosed by a sphere of radius 2 centered at the origin and the cone z=3x2+3y2z = \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } } .Use rectangular coordinates.  Set up the three-dimensional integral  \int _ { R } y d V  where R is the  ice-cream cone  enclosed by a sphere of radius 2 centered at the origin and the cone  z = \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } }  .Use rectangular coordinates.   A)   \int_{R} y d \mathrm{~V}=\int_{0}^{2 \pi} \int_{0}^{1} \int_{\sqrt{3 r}}^{\sqrt{4-r^{2}}} r^{2} \sin \theta d z d r d \theta  B)   \int _ { R } y d V = \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi / 6 } \int _ { 0 } ^ { 2 } \rho ^ { 3 } \sin \theta \sin ^ { 2 } \phi d \rho d \phi d \theta  C)   \int _ { R } y d V = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } y d z d y d x


A) Ryd V=02π013r4r2r2sinθdzdrdθ\int_{R} y d \mathrm{~V}=\int_{0}^{2 \pi} \int_{0}^{1} \int_{\sqrt{3 r}}^{\sqrt{4-r^{2}}} r^{2} \sin \theta d z d r d \theta
B) RydV=02π0π/602ρ3sinθsin2ϕdρdϕdθ\int _ { R } y d V = \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi / 6 } \int _ { 0 } ^ { 2 } \rho ^ { 3 } \sin \theta \sin ^ { 2 } \phi d \rho d \phi d \theta
C) RydV=111x21x23x2+3y24x2y2ydzdydx\int _ { R } y d V = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } y d z d y d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions