Solved

Let R Be the Region Bounded Between the Two Ellipses x232+y222=1\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 2 ^ { 2 } } = 1

Question 66

Multiple Choice

Let R be the region bounded between the two ellipses x232+y222=1\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 2 ^ { 2 } } = 1 and x232+y222=4\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 2 ^ { 2 } } = 4 Use this change of coordinates x=3rcost,y=2rsintx=3 r \cos t, y=2 r \sin t for r0,0t2πr \geq 0,0 \leq t \leq 2 \pi to evaluate the integral R(4x2+9y2) dA\int _ { R } \left( 4 x ^ { 2 } + 9 y ^ { 2 } \right) d A


A) 240 π\pi
B) 3240 π\pi
C) 162 π\pi
D) 1620 π\pi
E) 1620

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions