Solved

The Region W Is Shown Below wf(x,y,z)dV\int _ { w } f ( x , y , z ) d V

Question 22

Multiple Choice

The region W is shown below.Write the limits of integration for wf(x,y,z) dV\int _ { w } f ( x , y , z ) d V in spherical coordinates.  The region W is shown below.Write the limits of integration for  \int _ { w } f ( x , y , z )  d V  in spherical coordinates.   A)   \int _ { W } f ( x , y , z )  d V = \int _ { 0 } ^ { \pi } \int _ { \pi / 2 } ^ { \pi } \int _ { 0 } ^ { 1 } f ( \rho \sin \phi \cos \theta , \rho \sin \phi \sin \theta , \rho \cos \phi )  \rho ^ { 2 } \sin \phi d \rho d \phi d \theta  B)   \int _ { W } f ( x , y , z )  d V = \int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { - \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } } ^ { 0 } f ( x , y , z )  d z d y d x  C)   \int _ { W } f ( x , y , z )  d V = \int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - r ^ { 2 } } } ^ { 0 } f ( r \cos \theta , r \sin \theta , z )  r d z d r d \theta


A) Wf(x,y,z) dV=0ππ/2π01f(ρsinϕcosθ,ρsinϕsinθ,ρcosϕ) ρ2sinϕdρdϕdθ\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { \pi } \int _ { \pi / 2 } ^ { \pi } \int _ { 0 } ^ { 1 } f ( \rho \sin \phi \cos \theta , \rho \sin \phi \sin \theta , \rho \cos \phi ) \rho ^ { 2 } \sin \phi d \rho d \phi d \theta
B) Wf(x,y,z) dV=1101x21x2y20f(x,y,z) dzdydx\int _ { W } f ( x , y , z ) d V = \int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { - \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } } ^ { 0 } f ( x , y , z ) d z d y d x
C) Wf(x,y,z) dV=0π011r20f(rcosθ,rsinθ,z) rdzdrdθ\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - r ^ { 2 } } } ^ { 0 } f ( r \cos \theta , r \sin \theta , z ) r d z d r d \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions