Solved

Let W Be the Region Between the Spheres x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1

Question 26

Multiple Choice

Let W be the region between the spheres x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 and x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 .Given that W(x2+y2+z2) 1/2dV=15π\int _ { W } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 1 / 2 } d V = 15 \pi , evaluate the integral w(64x2+36y2+144z2) 1/2dV\int _ { w } \left( 64 x ^ { 2 } + 36 y ^ { 2 } + 144 z ^ { 2 } \right) ^ { 1 / 2 } d V , where Wˉ\bar{W} is the region between the ellipsoids x232+y242+z222=1\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 4 ^ { 2 } } + \frac { z ^ { 2 } } { 2 ^ { 2 } } = 1 and x232+y242+z222=4\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 4 ^ { 2 } } + \frac { z ^ { 2 } } { 2 ^ { 2 } } = 4 .


A) 8640π8640 \pi
B) 2160π2160 \pi
C) 24π24 \pi
D) 360π360 \pi
E) 360π3360 \pi ^ { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions