Solved

Convert the Integral to Polar Coordinates 1112x2f(x,y)dydx\int _ { - 1 } ^ { 1 } \int _ { 1 } ^ { \sqrt { 2 - x ^ { 2 } } } f ( x , y ) d y d x

Question 73

Multiple Choice

Convert the integral to polar coordinates. 1112x2f(x,y) dydx\int _ { - 1 } ^ { 1 } \int _ { 1 } ^ { \sqrt { 2 - x ^ { 2 } } } f ( x , y ) d y d x


A) π/43π/41/sinθ2f(rcosθ,rsinθ) drdθ\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) d r d \theta
B) 03π/41/sinθ2f(rcosθ,rsinθ) rdrdθ\int _ { 0 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d r d \theta
C) π/43π/412f(rcosθ,rsinθ) rdrdθ\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d r d \theta
D) π/43π/41/sinθ2f(rcosθ,rsinθ) rdrdθ\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d r d \theta
E) π/43π/41/sinθ2f(rcosθ,rsinθ) rdθdr\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d \theta d r

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions