Solved

The Hyperbolic Cosine Function Is Defined as Follows f(x)=cosh(x)=ex+ex2f(x)=\cosh (x)=\frac{e^{x}+e^{-x}}{2} Use the Taylor Polynomial For Defined

Question 52

Multiple Choice

The hyperbolic cosine function is defined as follows: f(x) =cosh(x) =ex+ex2f(x) =\cosh (x) =\frac{e^{x}+e^{-x}}{2} .Use the Taylor polynomial for exe^{x} near 0 to find the Taylor polynomial of degree 4 for f(x) =4cosh(x) f(x) =4 \cosh (x) .


A) 44x22!+4x33!4x44!4-\frac{4 x^{2}}{2 !}+\frac{4 x^{3}}{3 !}-\frac{4 x^{4}}{4 !}
B) 4(1+x22+x424) 4\left(1+\frac{x^{2}}{2}+\frac{x^{4}}{24}\right)
C) 4+3x1!3x22!+x4244+\frac{3 x}{1 !}-\frac{3 x^{2}}{2 !}+\frac{x^{4}}{24}
D) 4+4x+4x22+4x33!+4x44!4+4 x+\frac{4 x^{2}}{2}+\frac{4 x^{3}}{3 !}+\frac{4 x^{4}}{4 !}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions