Solved

The Function f(x)=ex2/2f(x)=e^{-x^{2} / 2} Is Part of the Normal Probability Density Function (Or Bell-Shaped

Question 25

Multiple Choice

The function f(x) =ex2/2f(x) =e^{-x^{2} / 2} is part of the normal probability density function (or bell-shaped curve) .Find the Maclaurin series for ex2/2dx\int e^{-x^{2} / 2} d x by first finding the Maclaurin series for f(x) f(x) and then integrating it term by term.


A) i=0(1) ix2i+1(2i+1) 2i(i!) +C\sum_{i=0}^{\infty} \frac{(-1) ^{i} x^{2 i+1}}{(2 i+1) 2^{i}(i !) }+C
B) i=0(1) ix2i(2i) 2i(i!) +C\sum_{i=0}^{\infty} \frac{(-1) ^{i} x^{2 i}}{(2 i) 2^{i}(i !) }+C
C) i=0(1) ix2i+1(2i+1) 2i(2i!) +C\sum_{i=0}^{\infty} \frac{(-1) ^{i} x^{2 i+1}}{(2 i+1) 2^{i}(2 i !) }+C
D) i=0(1) ix2i(2i) 2i(2i!) +C\sum_{i=0}^{\infty} \frac{(-1) ^{i} x^{2 i}}{(2 i) 2^{i}(2 i !) }+C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions