Solved

Find the Taylor Series Centered At x=0x=0 (IEThe Maclaurin Series)for sin(x2)\sin \left(x^{2}\right)

Question 6

Multiple Choice

Find the Taylor series centered at x=0x=0 (i.e.the Maclaurin series) for sin(x2) \sin \left(x^{2}\right) .


A) i=0(1) ix4i+3(4i+1) !\sum_{i=0}^{\infty} \frac{(-1) ^{i} x^{4 i+3}}{(4 i+1) !}
B) i=0(1) ix4i+2(2i+1) !\sum_{i=0}^{\infty} \frac{(-1) ^{i} x^{4 i+2}}{(2 i+1) !}
C) i=0(1) ix4i(2i) !\sum_{i=0}^{\infty} \frac{(-1) ^{i} x^{4 i}}{(2 i) !}
D) i=0(1) ix4i+1(4i) !\sum_{i=0}^{\infty} \frac{(-1) ^{i} x^{4 i+1}}{(4 i) !}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions