Solved

The Function H(x)is a Continuous Differentiable Function Whose Graph Is

Question 3

Multiple Choice

The function h(x) is a continuous differentiable function whose graph is drawn below.The accompanying table provides some information about h(x) and its derivatives.  The function h(x) is a continuous differentiable function whose graph is drawn below.The accompanying table provides some information about h(x) and its derivatives.    \begin{array} { c c c c c }  \boldsymbol { x } & \boldsymbol { h } ( \boldsymbol { x } )  & \boldsymbol { h } ^ { \prime } ( \boldsymbol { x } )  & \boldsymbol { h } ^{ { \prime }{ \prime }}  ( \boldsymbol { x } )  & \boldsymbol { h } ^ {{ \prime }{ \prime } { \prime } }  ( \boldsymbol { x } )  \\ 0 & 2 & 1 & 0.50 & 0.25 \\ 1 & 3.29 & 1.64 & 0.82 & 0.41 \\ 2 & 5.43 & 2.71 & 1.35 & 0.67 \\ 3 & 8.96 & 4.48 & 2.24 & 1.12 \end{array}  h(x) , h'(x) , h (x) and h '(x) are all increasing functions.Suppose we use a tangent line approximation at zero to approximate h(0.1) .Find a good upper bound for the error. A) 0.0025 B) 0.0820 C) 0.1066 D) 0.1558 xh(x) h(x) h(x) h(x) 0210.500.2513.291.640.820.4125.432.711.350.6738.964.482.241.12\begin{array} { c c c c c } \boldsymbol { x } & \boldsymbol { h } ( \boldsymbol { x } ) & \boldsymbol { h } ^ { \prime } ( \boldsymbol { x } ) & \boldsymbol { h } ^{ { \prime }{ \prime }} ( \boldsymbol { x } ) & \boldsymbol { h } ^ {{ \prime }{ \prime } { \prime } } ( \boldsymbol { x } ) \\0 & 2 & 1 & 0.50 & 0.25 \\1 & 3.29 & 1.64 & 0.82 & 0.41 \\2 & 5.43 & 2.71 & 1.35 & 0.67 \\3 & 8.96 & 4.48 & 2.24 & 1.12\end{array} h(x) , h'(x) , h"(x) and h"'(x) are all increasing functions.Suppose we use a tangent line approximation at zero to approximate h(0.1) .Find a good upper bound for the error.


A) 0.0025
B) 0.0820
C) 0.1066
D) 0.1558

Correct Answer:

verifed

Verified

Related Questions