Short Answer
Consider the ellipse pictured below: The perimeter of the ellipse is given by the integral .It turns out that there is no elementary antiderivative for the function , and so the integral must be evaluated numerically.A graph of the integrand f( )is shown below.
Calculate the right sum that approximates the definite integral with N = 4 equal divisions of the interval.Round to 4 decimal places.
Correct Answer:

Verified
Correct Answer:
Verified
Q14: <span class="ql-formula" data-value="\int \frac{e^{x}}{1+e^{2 x}} d x=\frac{1}{2}
Q15: Evaluate exactly: <span class="ql-formula" data-value="\int_{x
Q16: Evaluate <span class="ql-formula" data-value="\int_{0}^{1 /
Q17: Consider the integral <span class="ql-formula"
Q18: Find <span class="ql-formula" data-value="\int\left(\frac{1}{x+1}-\frac{1}{(x+1)^{2}}\right) d
Q20: <span class="ql-formula" data-value="\int(1+x) \sin (4 x) d
Q21: Calculate the area between the curve
Q22: Evaluate exactly: <span class="ql-formula" data-value="\int_{x
Q23: If <span class="ql-formula" data-value="\int_{0}^{2} \frac{d
Q24: Compute <span class="ql-formula" data-value="\int_{0}^{3} x