Solved

How Can You Verify the Reduction Formula (lnx)ndx=x(lnx)nn(lnx)n1dx\int(\ln x)^{n} d x=x(\ln x)^{n}-n \int(\ln x)^{n-1} d x

Question 44

Multiple Choice

How can you verify the reduction formula: (lnx) ndx=x(lnx) nn(lnx) n1dx\int(\ln x) ^{n} d x=x(\ln x) ^{n}-n \int(\ln x) ^{n-1} d x in one step?


A) using integration by parts (that is, udv=uvvdu\int u d v=u v-\int v d u ) with
u=(lnx) nu=(\ln x) ^{n} and
dv=dxd v=d x .
B) using integration by parts (that is, udv=uvvdu\int u d v=u v-\int v d u ) with
u=(lnx) n1u=(\ln x) ^{n-1} and
dv=lnxdxd v=\ln x d x .
C) using the substitution w=lnxw=\ln x .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions