Solved

Find the Equation of the Tangent Line to the Curve x=3π/4x = 3 \pi / 4

Question 3

Multiple Choice

Find the equation of the tangent line to the curve given by f(x) = x sin x at the point x=3π/4x = 3 \pi / 4 .


A) y+π28=22(3π41) (x3π4) y + \frac { \pi \sqrt { 2 } } { 8 } = \frac { \sqrt { 2 } } { 2 } \left( \frac { 3 \pi } { 4 } - 1 \right) \left( x - \frac { 3 \pi } { 4 } \right)
B) yπ28=22(3π4+1) (x3π4) y - \frac { \pi \sqrt { 2 } } { 8 } = \frac { \sqrt { 2 } } { 2 } \left( \frac { 3 \pi } { 4 } + 1 \right) \left( x - \frac { 3 \pi } { 4 } \right)
C) yπ28=22(3π4+1) (x3π4) y - \frac { \pi \sqrt { 2 } } { 8 } = - \frac { \sqrt { 2 } } { 2 } \left( \frac { 3 \pi } { 4 } + 1 \right) \left( x - \frac { 3 \pi } { 4 } \right)
D) yπ28=22(3π41) (x3π4) y - \frac { \pi \sqrt { 2 } } { 8 } = - \frac { \sqrt { 2 } } { 2 } \left( \frac { 3 \pi } { 4 } - 1 \right) \left( x - \frac { 3 \pi } { 4 } \right)

Correct Answer:

verifed

Verified

Related Questions