Solved

Determine Whether the Point P Is in the Convex Hull

Question 46

Multiple Choice

Determine whether the point p is in the convex hull of S.
- S={v1,v2,v3,v4}v1=[2051],v2=[1113],v3=[3204],p=[0142]\begin{array} { l } \mathrm { S } = \left\{ \mathbf { v } _ { 1 } , \mathbf { v } _ { 2 } , \mathbf { v } _ { 3 } , \mathbf { v } _ { 4 } \right\} \\\mathbf { v } _ { 1 } = \left[ \begin{array} { l } 2 \\0 \\5 \\1\end{array} \right] , \mathbf { v } _ { 2 } = \left[ \begin{array} { r } 1 \\1 \\- 1 \\- 3\end{array} \right] , \mathbf { v } _ { 3 } = \left[ \begin{array} { r } 3 \\2 \\0 \\- 4\end{array} \right] , \mathbf { p } = \left[ \begin{array} { r } 0 \\- 1 \\4 \\2\end{array} \right]\end{array}


A) pconvS.p=38v1+14v2+38v3\mathrm { p } \in \mathrm { conv } \mathrm { S } . \mathrm { p } = \frac { 3 } { 8 } \mathbf { v } _ { 1 } + \frac { 1 } { 4 } \mathbf { v } _ { 2 } + \frac { 3 } { 8 } \mathbf { v } _ { 3 }
B) p\mathbf { p } \in conv S. p=v1+v2v3\mathbf { p } = \mathbf { v } _ { 1 } + \mathbf { v } _ { 2 } - \mathbf { v } _ { 3 }
C) pconvS\mathbf { p } \notin \operatorname { conv } \mathrm { S } .
D) p\mathbf { p } \in conv S. p=2v1+3v24v3\mathbf { p } = 2 \mathbf { v } _ { 1 } + 3 \mathbf { v } _ { 2 } - 4 \mathbf { v } _ { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions