Solved

Let H Be the Hyperplane Through the Points A) f(x1,x2,x3)=x1+x2+52x3,d=92f \left( x _ { 1 } , x _ { 2 } , x _ { 3 } \right) = x _ { 1 } + x _ { 2 } + \frac { 5 } { 2 } x _ { 3 } , d = \frac { 9 } { 2 }

Question 17

Multiple Choice

Let H be the hyperplane through the points. Find a linear functional f and a real number d such that H = [f : d].
- [111],[315],[422]\left[ \begin{array} { l } 1 \\ 1 \\ 1 \end{array} \right] , \left[ \begin{array} { r } 3 \\ - 1 \\ 5 \end{array} \right] , \left[ \begin{array} { r } 4 \\ 2 \\ - 2 \end{array} \right]


A) f(x1,x2,x3) =x1+x2+52x3,d=92f \left( x _ { 1 } , x _ { 2 } , x _ { 3 } \right) = x _ { 1 } + x _ { 2 } + \frac { 5 } { 2 } x _ { 3 } , d = \frac { 9 } { 2 }
B) f(x1,x2,x3) =2x1+9x2+x3,d=8f \left( x _ { 1 } , x _ { 2 } , x _ { 3 } \right) = - 2 x _ { 1 } + 9 x _ { 2 } + x _ { 3 } , d = 8
C) f(x1,x2,x3) =8x1+2x2+4x3,d=14f \left( x _ { 1 } , x _ { 2 } , x _ { 3 } \right) = 8 x _ { 1 } + 2 x _ { 2 } + 4 x _ { 3 } , d = 14
D) f(x1,x2,x3) =x1+9x2+4x3,d=14f \left( x _ { 1 } , x _ { 2 } , x _ { 3 } \right) = x _ { 1 } + 9 x _ { 2 } + 4 x _ { 3 } , d = 14

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions