Solved

Let H Be the Hyperplane Through the Points A) f(x1,x2,x3,x4)=5x1+6x2+2x3+5x4,d=10 f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=5 x_{1}+6 x_{2}+2 x_{3}+5 x_{4}, d=10

Question 30

Multiple Choice

Let H be the hyperplane through the points. Find a linear functional f and a real number d such that H = [f : d].
- [1001],[2312],[1121],[3211] \left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{r}3 \\ 2 \\ -1 \\ 1\end{array}\right]


A) f(x1,x2,x3,x4) =5x1+6x2+2x3+5x4,d=10 f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) =5 x_{1}+6 x_{2}+2 x_{3}+5 x_{4}, d=10
B) f(x1,x2,x3,x4) =x12x26x3+13x4,d=12 f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) =x_{1}-2 x_{2}-6 x_{3}+13 x_{4}, d=12
C) f(x1,x2,x3,x4) =2x2x3+5x4,d=5 f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) =2 x_{2}-x_{3}+5 x_{4}, d=5
D) f(x1,x2,x3,x4) =5x1+2x26x3+5x4,d=0 f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) =-5 x_{1}+2 x_{2}-6 x_{3}+5 x_{4}, d=0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions