Solved

Provide an Appropriate Response
-Let p0,p1\mathrm { p } _ { 0 } , \mathrm { p } _ { 1 }

Question 25

Multiple Choice

Provide an appropriate response
-Let p0,p1\mathrm { p } _ { 0 } , \mathrm { p } _ { 1 } , and p2\mathrm { p } _ { 2 } be points in Rn\mathfrak { R } ^ { \mathrm { n } } and define f0(t) =(1t) p0+tp1,f1(t) =(1t) p1+tp2\mathrm { f } _ { 0 } ( \mathrm { t } ) = ( 1 - \mathrm { t } ) \mathrm { p } _ { 0 } + \mathrm { tp } _ { 1 } , \mathrm { f } _ { 1 } ( \mathrm { t } ) = ( 1 - \mathrm { t } ) \mathrm { p } _ { 1 } + \mathrm { tp } _ { 2 } , and g(t) =(1t) f0(t) +tf1(t) g ( t ) = ( 1 - t ) f _ { 0 } ( t ) + t f _ { 1 } ( t ) for 0t10 \leq t \leq 1 .
Find g12) \left. g \frac { 1 } { 2 } \right) in terms of the three points.


A) g(12) =32p0+12p112p2g \left( \frac { 1 } { 2 } \right) = \frac { 3 } { 2 } p _ { 0 } + \frac { 1 } { 2 } p _ { 1 } - \frac { 1 } { 2 } p _ { 2 }

B) g(12) =12p0+12p1g \left( \frac { 1 } { 2 } \right) = \frac { 1 } { 2 } \mathrm { p } _ { 0 } + \frac { 1 } { 2 } \mathrm { p } _ { 1 }

C) g(12) =14p0+12p1+14p2g \left( \frac { 1 } { 2 } \right) = \frac { 1 } { 4 } p _ { 0 } + \frac { 1 } { 2 } p _ { 1 } + \frac { 1 } { 4 } p _ { 2 }

D) g(12) =916p0+38p1+116p2g \left( \frac { 1 } { 2 } \right) = \frac { 9 } { 16 } \mathrm { p } _ { 0 } + \frac { 3 } { 8 } \mathrm { p } _ { 1 } + \frac { 1 } { 16 } \mathrm { p } _ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions