Solved

The Given Set Is a Basis for a Subspace W x1=[630],x2=[6183]x _ { 1 } = \left[ \begin{array} { r } 6 \\ - 3 \\ 0 \end{array} \right] , x _ { 2 } = \left[ \begin{array} { r } 6 \\ - 18 \\ 3 \end{array} \right]

Question 18

Multiple Choice

The given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.
-Let x1=[630],x2=[6183]x _ { 1 } = \left[ \begin{array} { r } 6 \\ - 3 \\ 0 \end{array} \right] , x _ { 2 } = \left[ \begin{array} { r } 6 \\ - 18 \\ 3 \end{array} \right]


A)
[630],[18243]\left[ \begin{array} { r } 6 \\ - 3 \\ 0 \end{array} \right] , \left[ \begin{array} { r } 18 \\ - 24 \\ 3 \end{array} \right]

B)
[630],[6183]\left[ \begin{array} { r } 6 \\ - 3 \\ 0 \end{array} \right] , \left[ \begin{array} { r } - 6 \\ - 18 \\ - 3 \end{array} \right]

C)
[930],[6183]\left[ \begin{array} { r } - 9 \\ - 3 \\ 0 \end{array} \right] , \left[ \begin{array} { r } 6 \\ - 18 \\ 3 \end{array} \right]

D)

[630],[6123]\left[ \begin{array} { r } 6 \\ - 3 \\ 0 \end{array} \right] , \left[ \begin{array} { r } - 6 \\ - 12 \\ 3 \end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions