Solved

The Given Set Is a Basis for a Subspace W

Question 19

Multiple Choice

The given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.
-Let x1=[0111],x2=[1111],x3=[1011]\mathrm { x } _ { 1 } = \left[ \begin{array} { r } 0 \\ 1 \\ - 1 \\ 1 \end{array} \right] , \mathrm { x } _ { 2 } = \left[ \begin{array} { r } 1 \\ 1 \\ - 1 \\ - 1 \end{array} \right] , \mathrm { x } _ { 3 } = \left[ \begin{array} { l } 1 \\ 0 \\ 1 \\ 1 \end{array} \right]


A) [0111],[3442],[1841913]\left[ \begin{array} { r } 0 \\ 1 \\ - 1 \\ 1 \end{array} \right] , \left[ \begin{array} { r } 3 \\ 4 \\ - 4 \\ - 2 \end{array} \right] , \left[ \begin{array} { r } 18 \\ 4 \\ 19 \\ 13 \end{array} \right]
B)
[0111],[1002],[6013]\left[ \begin{array} { r } 0 \\ 1 \\ - 1 \\ 1 \end{array} \right] , \left[ \begin{array} { r } 1 \\ 0 \\ 0 \\ - 2 \end{array} \right] , \left[ \begin{array} { l } 6 \\ 0 \\ 1 \\ 3 \end{array} \right]

C)
[0111],[1111],[1011]\left[ \begin{array} { r } 0 \\ 1 \\ - 1 \\ 1 \end{array} \right] , \left[ \begin{array} { r } 1 \\ 1 \\ - 1 \\ - 1 \end{array} \right] , \left[ \begin{array} { l } 1 \\ 0 \\ 1 \\ 1 \end{array} \right]

D)


[0111],[3224],[14297]\left[ \begin{array} { r } 0 \\ 1 \\ - 1 \\ 1 \end{array} \right] , \left[ \begin{array} { r } 3 \\ 2 \\ - 2 \\ - 4 \end{array} \right] , \left[ \begin{array} { r } 14 \\ 2 \\ 9 \\ 7 \end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions