Solved

Determine If the Vector U Is in the Column Space

Question 35

Multiple Choice

Determine if the vector u is in the column space of matrix A and whether it is in the null space of A.
-Let v1=[412],v2=[312],v3=[152]\mathbf { v } _ { \mathbf { 1 } } = \left[ \begin{array} { l } - 4 \\ - 1 \\ - 2 \end{array} \right] , \mathbf { v } _ { \mathbf { 2 } } = \left[ \begin{array} { r } - 3 \\ 1 \\ - 2 \end{array} \right] , \mathbf { v } _ { \mathbf { 3 } } = \left[ \begin{array} { r } 1 \\ - 5 \\ 2 \end{array} \right] , and H=Span{v1,v2,v3}\mathrm { H } = \operatorname { Span } \left\{ \mathbf { v } _ { 1 } , \mathbf { v } _ { 2 } , \mathbf { v } _ { 3 } \right\} .
Note that v3=2v13v2\mathbf { v } _ { 3 } = 2 \mathbf { v } _ { 1 } - 3 \mathbf { v } _ { 2 } . Which of the following sets form a basis for the subspace HH , i.e., which sets form an efficient spanning set containing no unnecessary vectors?
A:{v1,v2,v3}A : \left\{ v _ { 1 } , v _ { 2 } , v _ { 3 } \right\}
B:{v1,v2}B : \left\{ v _ { 1 } , v _ { 2 } \right\}
C:{v1,v3}C : \left\{ v _ { 1 } , v _ { 3 } \right\}
D: {v2,v3}\left\{ v _ { 2 } , v _ { 3 } \right\}


A) B only
B) A only
C) B, C, and D
D) BB and CC

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions