Solved

Determine Whether {V1, V2, V3} Is a Basis for R3

Question 30

Multiple Choice

Determine whether {v1, v2, v3} is a basis for R3
-Let H={[a+3 b+4 dc+d3a9 b+4c8 dcd]:a,b,c, d\mathrm { H } = \left\{ \left[ \begin{array} { c } \mathrm { a } + 3 \mathrm {~b} + 4 \mathrm {~d} \\ \mathrm { c } + \mathrm { d } \\ - 3 \mathrm { a } - 9 \mathrm {~b} + 4 \mathrm { c } - 8 \mathrm {~d} \\ - \mathrm { c } - \mathrm { d } \end{array} \right] : a , b , c , \mathrm {~d} \right. in R}\left. \mathscr { R } \right\}
Find the dimension of the subspace H\mathrm { H } .


A) dimH=2\operatorname { dim } \mathrm { H } = 2
B) dimH=4\operatorname { dim } \mathrm { H } = 4
C) dimH=3\operatorname { dim } \mathrm { H } = 3
D) dimH=1\operatorname { dim } \mathrm { H } = 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions