Solved

Determine Whether {V1, V2, V3} Is a Basis For , And

Question 17

Multiple Choice

Determine whether {v1, v2, v3} is a basis for
b1=[11],b2=[11],x=[35]\mathbf { b } _ { 1 } = \left[ \begin{array} { l } 1 \\ 1 \end{array} \right] , \mathbf { b } _ { 2 } = \left[ \begin{array} { r } 1 \\ - 1 \end{array} \right] , \mathbf { x } = \left[ \begin{array} { r } 3 \\ - 5 \end{array} \right] , and B={b1,b2}B = \left\{ \mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } \right\}
 Determine whether {v1, v2, v3} is a basis for   \mathbf { b } _ { 1 } = \left[ \begin{array} { l } 1 \\ 1 \end{array} \right] , \mathbf { b } _ { 2 } = \left[ \begin{array} { r } 1 \\ - 1 \end{array} \right] , \mathbf { x } = \left[ \begin{array} { r } 3 \\ - 5 \end{array} \right] , and  B = \left\{ \mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } \right\}      - B = \left\{ \left[ \begin{array} { r }  1 \\ - 3 \\ - 3 \end{array} \right] , \left[ \begin{array} { r }  - 3 \\ 8 \\ - 3 \end{array} \right] , \left[ \begin{array} { r }  2 \\ - 2 \\ 2 \end{array} \right] \right\} , [ \mathrm { x } ] B = \left[ \begin{array} { r }  - 4 \\ 2 \\ - 3 \end{array} \right]  A)   \left[ \begin{array} { r } - 10 \\ 34 \\ 8 \end{array} \right]   B)   \left[ \begin{array} { r } 0 \\ 6 \\ 12 \end{array} \right]   C)   \left[ \begin{array} { r } 8 \\ - 32 \\ 0 \end{array} \right]   D)   \left[ \begin{array} { r } - 16 \\ 34 \\ 0 \end{array} \right]


- B={[133],[383],[222]},[x]B=[423]B = \left\{ \left[ \begin{array} { r } 1 \\- 3 \\- 3\end{array} \right] , \left[ \begin{array} { r } - 3 \\8 \\- 3\end{array} \right] , \left[ \begin{array} { r } 2 \\- 2 \\2\end{array} \right] \right\} , [ \mathrm { x } ] B = \left[ \begin{array} { r } - 4 \\2 \\- 3\end{array} \right]


A)
[10348]\left[ \begin{array} { r } - 10 \\ 34 \\ 8 \end{array} \right]

B)
[0612]\left[ \begin{array} { r } 0 \\ 6 \\ 12 \end{array} \right]

C)
[8320]\left[ \begin{array} { r } 8 \\ - 32 \\ 0 \end{array} \right]

D)
[16340]\left[ \begin{array} { r } - 16 \\ 34 \\ 0 \end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions