Solved

Assume That the Matrix a Is Row Equivalent to B A=[1513024541]A = \left[ \begin{array} { r r r r r } 1 & 5 & 1 & 3 & 0 \\- 2 & - 4 & - 5 & - 4 & 1\end{array} \right]

Question 16

Multiple Choice

Assume that the matrix A is row equivalent to B. Find a basis for the row space of the matrix A.
- A=[1513024541]A = \left[ \begin{array} { r r r r r } 1 & 5 & 1 & 3 & 0 \\- 2 & - 4 & - 5 & - 4 & 1\end{array} \right]


A) dimNulA=2,dimColA=3\operatorname { dim } \mathrm { Nul } \mathrm { A } = 2 , \operatorname { dim } \operatorname { Col } \mathrm { A } = 3
B) dimNulA=4,dimColA=1\operatorname { dim } \mathrm { Nul } \mathrm { A } = 4 , \operatorname { dim } \operatorname { Col } \mathrm { A } = 1
C) dimNulA=3,dimColA=2\operatorname { dim } \operatorname { Nul } \mathrm { A } = 3 , \operatorname { dim } \operatorname { Col } \mathrm { A } = 2
D) dimNulA=3,dimColA=3\operatorname { dim } \mathrm { Nul } \mathrm { A } = 3 , \operatorname { dim } \operatorname { Col } \mathrm { A } = 3

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions