Solved

Write the System as a Vector Equation or Matrix Equation 2x1+x26x3=66x14x2=2\begin{array} { l l } 2 x _ { 1 } + x _ { 2 } - 6 x _ { 3 } & = - 6 \\6 x _ { 1 } - 4 x _ { 2 } & = 2\end{array}

Question 6

Multiple Choice

Write the system as a vector equation or matrix equation as indicated.
-Write the following system as a matrix equation involving the product of a matrix and a vector on the left side and a vector on the right side. 2x1+x26x3=66x14x2=2\begin{array} { l l } 2 x _ { 1 } + x _ { 2 } - 6 x _ { 3 } & = - 6 \\6 x _ { 1 } - 4 x _ { 2 } & = 2\end{array}


A) [216641][x1x2x3]=[62]\left[ \begin{array} { r r r } 2 & 1 & - 6 \\ 6 & 4 & 1 \end{array} \right] \left[ \begin{array} { l } x _ { 1 } \\ x _ { 2 } \\ x _ { 3 } \end{array} \right] = \left[ \begin{array} { r } - 6 \\ 2 \end{array} \right]

B) [216640][x1x2x3]=[62]\left[ \begin{array} { r r r } 2 & 1 & - 6 \\ 6 & - 4 & 0 \end{array} \right] \left[ \begin{array} { l } x _ { 1 } \\ x _ { 2 } \\ x _ { 3 } \end{array} \right] = \left[ \begin{array} { r } - 6 \\ 2 \end{array} \right]

C) [261460][x1x2]=[62]\left[ \begin{array} { r r } 2 & 6 \\ 1 & - 4 \\ - 6 & 0 \end{array} \right] \left[ \begin{array} { l } x _ { 1 } \\ x _ { 2 } \end{array} \right] = \left[ \begin{array} { r } - 6 \\ 2 \end{array} \right]

D) [x1x2x3640][216]=[62]\left[ \begin{array} { c c r } x _ { 1 } & x _ { 2 } & x _ { 3 } \\ 6 & - 4 & 0 \end{array} \right] \left[ \begin{array} { r } 2 \\ 1 \\ - 6 \end{array} \right] = \left[ \begin{array} { r } - 6 \\ 2 \end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions