Solved

Solve the Problem I3=[100010001]\mathrm { I } _ { 3 } = \left[ \begin{array} { l l l } 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]

Question 1

Multiple Choice

Solve the problem.
-The columns of I3=[100010001]\mathrm { I } _ { 3 } = \left[ \begin{array} { l l l } 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] are e1=[100],e2=[010],e3=[001]\mathbf { e } _ { 1 } = \left[ \begin{array} { l } 1 \\ 0 \\ 0 \end{array} \right] , \mathbf { e } _ { 2 } = \left[ \begin{array} { l } 0 \\ 1 \\ 0 \end{array} \right] , \mathbf { e } _ { 3 } = \left[ \begin{array} { l } 0 \\ 0 \\ 1 \end{array} \right] .
Suppose that T\mathrm { T } is a linear transformation from R3R ^ { 3 } into R2\mathcal { R } ^ { 2 } such that
T(e1) =[32],T(e2) =[50]\mathrm { T } \left( \mathbf { e } _ { 1 } \right) = \left[ \begin{array} { r } 3 \\ - 2 \end{array} \right] , \mathrm { T } \left( \mathbf { e } _ { 2 } \right) = \left[ \begin{array} { l } 5 \\ 0 \end{array} \right] , and T(e3) =[51]\mathrm { T } \left( \mathbf { e } _ { 3 } \right) = \left[ \begin{array} { r } - 5 \\ 1 \end{array} \right]
Find a formula for the image of an arbitrary x=[x1x2x3]x = \left[ \begin{array} { l } x _ { 1 } \\ x _ { 2 } \\ x _ { 3 } \end{array} \right] in R3R ^ { 3 } .


A)
T[x1x2x3]=[3x12x25x1]T \left[ \begin{array} { l } x _ { 1 } \\ x _ { 2 } \\ x _ { 3 } \end{array} \right] = \left[ \begin{array} { l } 3 x _ { 1 } - 2 x _ { 2 } \\ 5 x _ { 1 } \end{array} \right]
B)
T[x1x2x3]=[3x12x25x15x2+x3]T \left[ \begin{array} { l } x _ { 1 } \\ x _ { 2 } \\ x _ { 3 } \end{array} \right] = \left[ \begin{array} { l } 3 x _ { 1 } - 2 x _ { 2 } \\ 5 x _ { 1 } \\ 5 x _ { 2 } + x _ { 3 } \end{array} \right]
C)
T[x1x2x3]=[3x1+5x25x35x12x1+x3]T \left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 }\end{array} \right] = \left[ \begin{array} { l } 3 x _ { 1 } + 5 x _ { 2 } - 5 x _ { 3 } \\5 x _ { 1 } \\- 2 x _ { 1 } + x _ { 3 }\end{array} \right]
D)
T[x1x2x3]=[3x1+5x25x32x1+x3]T \left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 }\end{array} \right] = \left[ \begin{array} { l l } 3 x _ { 1 } + 5 x _ { 2 } - 5 x _ { 3 } \\- 2 x _ { 1 } + x _ { 3 }\end{array} \right]

Correct Answer:

verifed

Verified

Related Questions