Solved

Solve the Problem A=[132251363]A = \left[ \begin{array} { r r r } 1 & - 3 & 2 \\ - 2 & 5 & - 1 \\ 3 & - 6 & - 3 \end{array} \right]

Question 61

Multiple Choice

Solve the problem.
-Let A=[132251363]A = \left[ \begin{array} { r r r } 1 & - 3 & 2 \\ - 2 & 5 & - 1 \\ 3 & - 6 & - 3 \end{array} \right] and b=[b1b2b3]\mathbf { b } = \left[ \begin{array} { l } b _ { 1 } \\ b _ { 2 } \\ b _ { 3 } \end{array} \right]
Determine if the equation Ax=b\mathrm { Ax } = \mathrm { b } is consistent for all possible b1, b2, b3\mathrm { b } _ { 1 } , \mathrm {~b} _ { 2 } , \mathrm {~b} _ { 3 } . If the equation is not consistent for all possible b1,b2,b3b _ { 1 } , b _ { 2 } , b _ { 3 } , give a description of the set of all b\mathbf { b } for which the equation is consistent (i.e., a condition which must be satisfied by b1,b2,b3b _ { 1 } , b _ { 2 } , b _ { 3 } ) .


A) Equation is consistent for all b1,b2,b3b _ { 1 } , b _ { 2 } , b _ { 3 } satisfying b1+b2+b3=0- b _ { 1 } + b _ { 2 } + b _ { 3 } = 0 .
B) Equation is consistent for all b1,b2,b3b _ { 1 } , b _ { 2 } , b _ { 3 } satisfying 3b1+b3=0- 3 b _ { 1 } + b _ { 3 } = 0 .
C) Equation is consistent for all b1,b2,b3b _ { 1 } , b _ { 2 } , b _ { 3 } satisfying 3b1+3b2+b3=03 b _ { 1 } + 3 b _ { 2 } + b _ { 3 } = 0 .
D) Equation is consistent for all possible b1,b2,b3b _ { 1 } , b _ { 2 } , b _ { 3 } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions