Solved

Solve the Problem Determine Whether the Linear Transformation T\mathrm { T }

Question 63

Multiple Choice

Solve the problem.
- T(x1,x2,x3) =(4x24x3,2x1+8x2+4x3,x12x3,4x2+4x3) \mathrm { T } \left( \mathrm { x } _ { 1 } , \mathrm { x } _ { 2 } , \mathrm { x } _ { 3 } \right) = \left( - 4 \mathrm { x } _ { 2 } - 4 \mathrm { x } _ { 3 } , - 2 \mathrm { x } _ { 1 } + 8 \mathrm { x } _ { 2 } + 4 \mathrm { x } _ { 3 } , - \mathrm { x } _ { 1 } - 2 \mathrm { x } _ { 3 } , 4 \mathrm { x } _ { 2 } + 4 \mathrm { x } _ { 3 } \right)
Determine whether the linear transformation T\mathrm { T } is one-to-one and whether it maps R3\mathfrak { R } ^ { 3 } onto R4\mathfrak { R } ^ { 4 } .


A) One-to-one; not onto R4R ^ { 4 }
B) Not one-to-one; onto R24R 24
C) Not one-to-one; not onto R4R ^ { 4 }
D) One-to-one; onto R4R ^ { 4 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions