Solved

Find the Standard Matrix of the Linear Transformation T R2>R2\mathfrak { R } ^ { 2 } \rightarrow > \mathfrak { R } ^ { 2 }

Question 24

Multiple Choice

Find the standard matrix of the linear transformation T.
-T: R2>R2\mathfrak { R } ^ { 2 } \rightarrow > \mathfrak { R } ^ { 2 } rotates points (about the origin) through 74π\frac { 7 } { 4 } \pi radians (with counterclockwise rotation for a positive angle) .


A)
[33333333]\left[\begin{array}{c}\frac{\sqrt{3}}{3} \frac{\sqrt{3}}{3} \\-\frac{\sqrt{3}}{3} \frac{\sqrt{3}}{3}\end{array}\right]

B) [22222222]\left[\begin{array}{c}-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} \\-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\end{array}\right]
C)
 Find the standard matrix of the linear transformation T. -T:  \mathfrak { R } ^ { 2 } \rightarrow > \mathfrak { R } ^ { 2 }  rotates points (about the origin)  through  \frac { 7 } { 4 } \pi  radians (with counterclockwise rotation for a positive angle) . A)   \left[\begin{array}{c} \frac{\sqrt{3}}{3} \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{3}}{3} \frac{\sqrt{3}}{3} \end{array}\right]   B)   \left[\begin{array}{c} -\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} \end{array}\right]  C)     D)    \left[ \begin{array} { r r } 1 & 1 \\ - 1 & 1 \end{array} \right]

D)
[1111]\left[ \begin{array} { r r } 1 & 1 \\ - 1 & 1 \end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions