Solved

The Following MINITAB Output Display Presents the Results of a Hypothesis

Question 36

Multiple Choice

The following MINITAB output display presents the results of a hypothesis test for the difference μ1μ2\mu _ { 1 } - \mu _ { 2 } between two population means.
 Two-sample T for X1 vs X2 N Mean  StDev  SE Mean  A 1571.31924.9056.430 B 1550.45024.9516.442\begin{array}{l}\text { Two-sample T for X1 vs X2 }\\\begin{array}{rrrrc} & \mathrm{N} & \text { Mean } & \text { StDev } & \text { SE Mean } \\\text { A } & 15 & 71.319 & 24.905 & 6.430 \\\text { B } & 15 & 50.450 & 24.951 & 6.442\end{array}\end{array}

Difference =mu(X1) mu(X2) = \operatorname { mu } ( \mathrm { X } 1 ) - \mathrm { mu } ( \mathrm { X } 2 )
Estimate for difference: 20.86920.869
95%95 \% CI for difference: (3.028,38.710) ( 3.028,38.710 )
T-Test of difference =0(= 0 ( vs not =) := ) : T-Value =2.292686= 2.292686
P-Value =0.029586= 0.029586 \quad DF =28= 28
How many degrees of freedom are there for the test statistic?


A) 27
B) 0.029586
C) 28
D) 20.869

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions