Solved

In Nonlinear Models, the Expected Change in the Dependent Variable ΔY=f(X1+ΔX1,X2,,Xk)\quad \Delta Y = f \left( X _ { 1 } + \Delta X _ { 1 } , X _ { 2 } , \ldots , X _ { k } \right)

Question 26

Short Answer

In nonlinear models, the expected change in the dependent variable for a change in one of the explanatory variables is given by a. ΔY=f(X1+ΔX1,X2,,Xk)\quad \Delta Y = f \left( X _ { 1 } + \Delta X _ { 1 } , X _ { 2 } , \ldots , X _ { k } \right) .
b. ΔY=f(X1+ΔX1,X2+ΔX2,,Xk+ΔXk)f(X1,X2,Xk)\Delta Y = f \left( X _ { 1 } + \Delta X _ { 1 } , X _ { 2 } + \Delta X _ { 2 } , \ldots , X _ { k } + \Delta X _ { k } \right) - f \left( X _ { 1 } , X _ { 2 } , \ldots X _ { k } \right) .
c. ΔY=f(X1+ΔX1,X2,,Xk)f(X1,X2,Xk)\Delta Y = f \left( X _ { 1 } + \Delta X _ { 1 } , X _ { 2 } , \ldots , X _ { k } \right) - f \left( X _ { 1 } , X _ { 2 } , \ldots X _ { k } \right) .
d. ΔY=f(X1+X1,X2,,Xk)f(X1,X2,Xk)\quad \Delta Y = f \left( X _ { 1 } + X _ { 1 } , X _ { 2 } , \ldots , X _ { k } \right) - f \left( X _ { 1 } , X _ { 2 } , \ldots X _ { k } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions