Solved

In the Regression Model Yi=β0+β1Xi+β2Di+β3(Xi×Di)+uiY _ { i } = \beta _ { 0 } + \beta _ { 1 } X _ { i } + \beta _ { 2 } D _ { i } + \beta _ { 3 } \left( X _ { i } \times D _ { i } \right) + u _ { i }

Question 14

Multiple Choice

In the regression model Yi=β0+β1Xi+β2Di+β3(Xi×Di) +uiY _ { i } = \beta _ { 0 } + \beta _ { 1 } X _ { i } + \beta _ { 2 } D _ { i } + \beta _ { 3 } \left( X _ { i } \times D _ { i } \right) + u _ { i }
where X is a continuous
variable and D is a binary variable, to test that the two regressions are identical, you must use the


A) t -statistic separately for β2=0,β3=0\beta _ { 2 } = 0 , \beta _ { 3 } = 0
B) F -statistic for the joint hypothesis that β0=0,β1=0\beta _ { 0 } = 0 , \beta _ { 1 } = 0
C) t -statistic separately for β3=0\beta _ { 3 } = 0
D) F -statistic for the joint hypothesis that β2=0,β3=0\beta _ { 2 } = 0 , \beta _ { 3 } = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions