Solved

In the Multiple Regression Model The OLS Estimators Are Obtained by Minimizing the Sum of =

Question 8

Multiple Choice

In the multiple regression model Yi=β0+β1X1i+β2X2i++βkXki+ui,i=1,,nY _ { i } = \beta _ { 0 } + \beta _ { 1 } X _ { 1 i } + \beta _ { 2 } X _ { 2 i } + \ldots + \beta _ { k } X _ { k i } + u _ { i } , i = 1 , \ldots , n
the OLS estimators are obtained by minimizing the sum of


A) squared mistakes in i=1n(Yib0b1X1ibkXki) 2\sum _ { i = 1 } ^ { n } \left( Y _ { i } - b _ { 0 } - b _ { 1 } X _ { 1 i } - \ldots - b _ { k } X _ { k i } \right) ^ { 2 }
B) squared mistakes in i=1n(Yib0b1X1ibkXkiui) 2\sum _ { i = 1 } ^ { n } \left( Y _ { i } - b _ { 0 } - b _ { 1 } X _ { 1 i } - \ldots - b _ { k } X _ { k i } - u _ { i } \right) ^ { 2 }
C) absolute mistakes in i=1n(Yib0b1X1ibkXki) \sum _ { i = 1 } ^ { n } \left| \left( Y _ { i } - b _ { 0 } - b _ { 1 } X _ { 1 i } - \ldots - b _ { k } X _ { k i } \right) \right|
D) squared mistakes in i=1n(Yib0b1Xi) 2\sum _ { i = 1 } ^ { n } \left( Y _ { i } - b _ { 0 } - b _ { 1 } X _ { i } \right) ^ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions