Solved

In the Multiple Regression Model with Two Regressors, the Formula

Question 6

Essay

In the multiple regression model with two regressors, the formula for the slope of the first
explanatory variable is β^1=i=1nyix1ii=1nx2i2i=1nyix2ii=1nx1ix2ii=1nx1i2i=1nx2i2(i=1nx1ix2i)2\hat { \beta } _ { 1 } = \frac { \sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } } { \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \left( \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } \right) ^ { 2 } }
(small letters refer to deviations from means as in zi=ZiZˉz _ { i } = Z _ { i } - \bar { Z } ). An alternative way to derive the OLS estimator is given through the following three step
procedure. Step 1: regress YY on a constant and X2X _ { 2 } , and calculate the residual (Res1).
Step 2: regress X1X _ { 1 } on a constant and X2X _ { 2 } , and calculate the residual (Res2).
Step 3: regress Res1 on a constant and Res2. Prove that the slope of the regression in Step 3 is identical to the above formula.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions