Solved

The 95% Confidence Interval for the Predicted Effect of a General

Question 4

Short Answer

The 95% confidence interval for the predicted effect of a general change in X is a. (β1Δx1.96SE(β1)×Δx,β1Δx+1.96SE(β1)×Δx)\quad \left( \beta _ { 1 } \Delta x - 1.96 \operatorname { SE } \left( \beta _ { 1 } \right) \times \Delta x , \beta _ { 1 } \Delta x + 1.96 \operatorname { SE } \left( \beta _ { 1 } \right) \times \Delta x \right)
b. (β^1Δx1.645SE(β^1)×Δx,β^1Δx+1.645SE(β^1)×Δx)\left( \widehat { \beta } _ { 1 } \Delta x - 1.645 \operatorname { SE } \left( \hat { \beta } _ { 1 } \right) \times \Delta x , \widehat { \beta } _ { 1 } \Delta x + 1.645 \operatorname { SE } \left( \hat { \beta } _ { 1 } \right) \times \Delta x \right)
c. (β^1Δx1.96SE(β^1)×Δx,β^1Δx+1.96SE(β^1)×Δx)\left( \hat { \beta } _ { 1 } \Delta x - 1.96 \operatorname { SE } \left( \hat { \beta } _ { 1 } \right) \times \Delta x , \widehat { \beta } _ { 1 } \Delta x + 1.96 \operatorname { SE } \left( \hat { \beta } _ { 1 } \right) \times \Delta x \right)
d. (β^1Δx1.96,β^1Δx+1.96)\left( \widehat { \beta } _ { 1 } \Delta x - 1.96 , \widehat { \beta } _ { 1 } \Delta x + 1.96 \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions