Solved

Consider the Sample Regression Function Y^i=β^0+β^1Xi\widehat { Y } _ { i } = \widehat { \beta } _ { 0 } + \widehat { \beta } _ { 1 } X _ { i }

Question 22

Essay

Consider the sample regression function Y^i=β^0+β^1Xi\widehat { Y } _ { i } = \widehat { \beta } _ { 0 } + \widehat { \beta } _ { 1 } X _ { i }
The table below lists estimates for the slope (β^1)\left( \widehat { \beta } _ { 1 } \right) and the variance of the slope estimator (σ^β^12)\left( \widehat { \sigma } _ { \widehat { \beta } _ { 1 } } ^ { 2 } \right) In each case calculate the p -value for the null hypothesis of β1=0\beta _ { 1 } = 0 and a two-tailed alternative hypothesis. Indicate in which case you would reject the null hypothesis at the 5 % significance level.
β^11.760.00252.850.00014σ^β^120.370.000003117.50.0000013\begin{array} { | c | c | c | c | c | } \hline \widehat { \beta } _ { 1 } & - 1.76 & 0.0025 & 2.85 & - 0.00014 \\\hline \hat { \sigma } _ { \widehat { \beta } _ { 1 } } ^ { 2 } & 0.37 & 0.000003 & 117.5 & 0.0000013 \\\hline\end{array}

Correct Answer:

verifed

Verified

The t-statistics are -2.89, 1....

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions