Solved

Your Textbook Defines the Correlation Coefficient as Follows Another Textbook Gives an Alternative Formula

Question 25

Essay

Your textbook defines the correlation coefficient as follows: r=1n1i=1n(YiYˉ)2(XiXˉ)21n1i=1n(YiYˉ)21n1i=1n(XiXˉ)2r = \frac { \frac { 1 } { n - 1 } \sum _ { i = 1 } ^ { n } \left( Y _ { i } - \bar { Y } \right) ^ { 2 } \left( X _ { i } - \bar { X } \right) ^ { 2 } } { \sqrt { \frac { 1 } { n - 1 } \sum _ { i = 1 } ^ { n } \left( Y _ { i } - \bar { Y } \right) ^ { 2 } } \sqrt { \frac { 1 } { n - 1 } \sum _ { i = 1 } ^ { n } \left( X _ { i } - \bar { X } \right) ^ { 2 } } } Another textbook gives an alternative formula: r=ni=1nYiXi(i=1nYi)(i=1nXi)ni=1nYi2(i=1nYi)2ni=1nXi2(i=1nXi)2r = \frac { n \sum _ { i = 1 } ^ { n } Y _ { i } X _ { i } - \left( \sum _ { i = 1 } ^ { n } Y _ { i } \right) \left( \sum _ { i = 1 } ^ { n } X _ { i } \right) } { \sqrt { n \sum _ { i = 1 } ^ { n } Y _ { i } ^ { 2 } - \left( \sum _ { i = 1 } ^ { n } Y _ { i } \right) ^ { 2 } } \sqrt { n \sum _ { i = 1 } ^ { n } X _ { i } ^ { 2 } - \left( \sum _ { i = 1 } ^ { n } X _ { i } \right) ^ { 2 } } } Prove that the two are the same.
22

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions