Solved

Use the Substitution u=1x and v=1yu = \frac { 1 } { x } \text { and } v = \frac { 1 } { y }

Question 51

Multiple Choice

Use the substitution u=1x and v=1yu = \frac { 1 } { x } \text { and } v = \frac { 1 } { y } to rewrite the equations in the system in terms of the variables u and
v. Solve the system in terms of u and v. Then back substitute to determine the solution set to the original
system in terms of x and y.
- 2x+1y=42x3y=20\begin{array} { l } \frac { 2 } { x } + \frac { 1 } { y } = - 4 \\\frac { 2 } { x } - \frac { 3 } { y } = 20\end{array}


A) {(1,6) }\{ ( 1 , - 6 ) \}
B) {(52,1) }\left\{ \left( - \frac { 5 } { 2 } , 1 \right) \right\}
C) {(1,16) }\left\{ \left( 1 , - \frac { 1 } { 6 } \right) \right\}
D) {(25,1) }\left\{ \left( - \frac { 2 } { 5 } , 1 \right) \right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions