Solved

Solve Using Cramer's Rule W1W _ { 1 } And W2W _ { 2 }

Question 102

Multiple Choice

Solve using Cramer's Rule.
-Linear systems occur in the design of roof trusses for new homes and buildings. The simplest type of roof truss is a triangle. The truss shown in the figure is used to frame roofs of small buildings. If a force of 124 pounds is applied at the peak of the truss, then the forces or weights W1W _ { 1 } and W2W _ { 2 } exerted parallel to each rafter of the truss are determined by the following linear system of equations. Solve the system to find W1W _ { 1 } and W2W _ { 2 } .
 Solve using Cramer's Rule. -Linear systems occur in the design of roof trusses for new homes and buildings. The simplest type of roof truss is a triangle. The truss shown in the figure is used to frame roofs of small buildings. If a force of 124 pounds is applied at the peak of the truss, then the forces or weights  W _ { 1 }  and  W _ { 2 }  exerted parallel to each rafter of the truss are determined by the following linear system of equations. Solve the system to find  W _ { 1 }  and  W _ { 2 } .     \begin{array} { l }  \frac { \sqrt { 3 } } { 2 } \left( W _ { 1 } + W _ { 2 } \right)  = 124 \\ W _ { 1 } - W _ { 2 } = 0 \end{array}  A)   \mathrm { W } _ { 1 } = - 71.59 \mathrm { lb } ; \mathrm { W } _ { 2 } = - 71.59 \mathrm { lb }  B)   \mathrm { W } _ { 1 } = 71.59 \mathrm { lb } ; \mathrm { W } _ { 2 } = 71.59 \mathrm { lb }  C)   \mathrm { W } _ { 1 } = 71.59 \mathrm { lb } ; \mathrm { W } _ { 2 } = 62 \mathrm { lb }  D)   \mathrm { W } _ { 1 } = 41.33 \mathrm { lb } ; \mathrm { W } _ { 2 } = 41.33 \mathrm { lb }

32(W1+W2) =124W1W2=0\begin{array} { l } \frac { \sqrt { 3 } } { 2 } \left( W _ { 1 } + W _ { 2 } \right) = 124 \\W _ { 1 } - W _ { 2 } = 0\end{array}


A) W1=71.59lb;W2=71.59lb\mathrm { W } _ { 1 } = - 71.59 \mathrm { lb } ; \mathrm { W } _ { 2 } = - 71.59 \mathrm { lb }
B) W1=71.59lb;W2=71.59lb\mathrm { W } _ { 1 } = 71.59 \mathrm { lb } ; \mathrm { W } _ { 2 } = 71.59 \mathrm { lb }
C) W1=71.59lb;W2=62lb\mathrm { W } _ { 1 } = 71.59 \mathrm { lb } ; \mathrm { W } _ { 2 } = 62 \mathrm { lb }
D) W1=41.33lb;W2=41.33lb\mathrm { W } _ { 1 } = 41.33 \mathrm { lb } ; \mathrm { W } _ { 2 } = 41.33 \mathrm { lb }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions