Solved

Solve Using Cramer's Rule W1W _ { 1 } And W2W _ { 2 }

Question 101

Multiple Choice

Solve using Cramer's Rule.
-Linear systems occur in the design of roof trusses for new homes and buildings. The simplest type of roof truss is a triangle. The truss shown in the figure is used to frame roofs of small buildings. If a 109-pound force is applied at the peak of the truss, then the forces or weights W1W _ { 1 } and W2W _ { 2 } exerted parallel to each rafter of the truss are determined by the following linear system of equations. Solve the system to find W1W _ { 1 } and W2W _ { 2 } .
 Solve using Cramer's Rule. -Linear systems occur in the design of roof trusses for new homes and buildings. The simplest type of roof truss is a triangle. The truss shown in the figure is used to frame roofs of small buildings. If a 109-pound force is applied at the peak of the truss, then the forces or weights  W _ { 1 }  and  W _ { 2 }  exerted parallel to each rafter of the truss are determined by the following linear system of equations. Solve the system to find  W _ { 1 }  and  W _ { 2 } .    W _ { 1 } + \sqrt { 2 } W _ { 2 } = 218    \sqrt { 3 } W _ { 1 } - \sqrt { 2 } W _ { 2 } = 0  A)   W _ { 1 } = 109 \mathrm { lb } ; \mathrm { W } _ { 2 } = 133.5 \mathrm { lb }  B)   \mathrm { W } _ { 1 } = 79.79 \mathrm { lb } ; \mathrm { W } _ { 2 } = 97.73 \mathrm { lb }  C)   \mathrm { W } _ { 1 } = 39.9 \mathrm { lb } ; \mathrm { W } _ { 2 } = 48.86 \mathrm { lb }  D)   \mathrm { W } _ { 1 } = 97.73 \mathrm { lb } ; \mathrm { W } _ { 2 } = 79.79 \mathrm { lb }
W1+2W2=218W _ { 1 } + \sqrt { 2 } W _ { 2 } = 218

3W12W2=0\sqrt { 3 } W _ { 1 } - \sqrt { 2 } W _ { 2 } = 0


A) W1=109lb;W2=133.5lbW _ { 1 } = 109 \mathrm { lb } ; \mathrm { W } _ { 2 } = 133.5 \mathrm { lb }
B) W1=79.79lb;W2=97.73lb\mathrm { W } _ { 1 } = 79.79 \mathrm { lb } ; \mathrm { W } _ { 2 } = 97.73 \mathrm { lb }
C) W1=39.9lb;W2=48.86lb\mathrm { W } _ { 1 } = 39.9 \mathrm { lb } ; \mathrm { W } _ { 2 } = 48.86 \mathrm { lb }
D) W1=97.73lb;W2=79.79lb\mathrm { W } _ { 1 } = 97.73 \mathrm { lb } ; \mathrm { W } _ { 2 } = 79.79 \mathrm { lb }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions