Solved

Solve the System to Find W1 and W2W _ { 1 } \text { and } W _ { 2 }

Question 185

Multiple Choice

Solve the system to find W1 and W2W _ { 1 } \text { and } W _ { 2 }
-Linear systems occur in the design of roof trusses for new homes and buildings. The simplest type 223) of roof truss is a triangle. The truss shown in the figure is used to frame roofs of small buildings. If
A force of 116 pounds is applied at the peak of the truss, then the forces or weight W1 and W2\mathrm { W } _ { 1 } \text { and } \mathrm { W } _ { 2 } exerted parallel to each rafter of the truss are determined by the following linear system of equations.  Solve the system to find  W _ { 1 } \text { and } W _ { 2 }  -Linear systems occur in the design of roof trusses for new homes and buildings. The simplest type 223)  of roof truss is a triangle. The truss shown in the figure is used to frame roofs of small buildings. If A force of 116 pounds is applied at the peak of the truss, then the forces or weight  \mathrm { W } _ { 1 } \text { and } \mathrm { W } _ { 2 }  exerted parallel to each rafter of the truss are determined by the following linear system of equations.     \begin{array} { l }  \frac { \sqrt { 3 } } { 2 } \left( W _ { 1 } + W _ { 2 } \right)  = 116 \\ W _ { 1 } - W _ { 2 } = 0 \end{array}  A)   W _ { 1 } = 66.97 \mathrm { lb } ; W _ { 2 } = 66.97 \mathrm { lb }  B)   \mathrm { W } _ { 1 } = 38.67 \mathrm { lb } ; \mathrm { W } _ { 2 } = 38.67 \mathrm { lb }  C)   W _ { 1 } = - 66.97 \mathrm { lb } ; W _ { 2 } = - 66.97 \mathrm { lb }  D)   \mathrm { W } _ { 1 } = 66.97 \mathrm { lb } ; \mathrm { W } _ { 2 } = 58 \mathrm { lb }

32(W1+W2) =116W1W2=0\begin{array} { l } \frac { \sqrt { 3 } } { 2 } \left( W _ { 1 } + W _ { 2 } \right) = 116 \\W _ { 1 } - W _ { 2 } = 0\end{array}


A) W1=66.97lb;W2=66.97lbW _ { 1 } = 66.97 \mathrm { lb } ; W _ { 2 } = 66.97 \mathrm { lb }
B) W1=38.67lb;W2=38.67lb\mathrm { W } _ { 1 } = 38.67 \mathrm { lb } ; \mathrm { W } _ { 2 } = 38.67 \mathrm { lb }
C) W1=66.97lb;W2=66.97lbW _ { 1 } = - 66.97 \mathrm { lb } ; W _ { 2 } = - 66.97 \mathrm { lb }
D) W1=66.97lb;W2=58lb\mathrm { W } _ { 1 } = 66.97 \mathrm { lb } ; \mathrm { W } _ { 2 } = 58 \mathrm { lb }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions