Solved

Solve the System to Find W1 and W2W _ { 1 } \text { and } W _ { 2 }

Question 191

Multiple Choice

Solve the system to find W1 and W2W _ { 1 } \text { and } W _ { 2 }
-Linear systems occur in the design of roof trusses for new homes and buildings. The simplest type of roof truss is a triangle. The truss shown in the figure is used to frame roofs of small buildings. If
A 172-pound force is applied at the peak of the truss, then the forces or weights W W1 and W2\mathrm { W } _ { 1 } \text { and } \mathrm { W } _ { 2 } exerted
Parallel to each rafter of the truss are determined by the following linear system of equations.  Solve the system to find  W _ { 1 } \text { and } W _ { 2 }  -Linear systems occur in the design of roof trusses for new homes and buildings. The simplest type of roof truss is a triangle. The truss shown in the figure is used to frame roofs of small buildings. If A 172-pound force is applied at the peak of the truss, then the forces or weights W  \mathrm { W } _ { 1 } \text { and } \mathrm { W } _ { 2 }  exerted Parallel to each rafter of the truss are determined by the following linear system of equations.    \begin{array}{l} W_{1}+\sqrt{2} W_{2}=344 \\ \sqrt{3} W_{1}-\sqrt{2} W_{2}=0 \end{array}   A)   \mathrm { W } _ { 1 } = 154.21 \mathrm { lb } ; \mathrm { W } _ { 2 } = 125.91 \mathrm { lb }  B)   \mathrm { W } _ { 1 } = 125.91 \mathrm { lb } ; \mathrm { W } _ { 2 } = 154.21 \mathrm { lb }  C)   W _ { 1 } = 62.96 \mathrm { lb } ; W _ { 2 } = 77.11 \mathrm { lb }  D)   W _ { 1 } = 172 \mathrm { lb } ; W _ { 2 } = 210.66 \mathrm { lb }
W1+2W2=3443W12W2=0\begin{array}{l}W_{1}+\sqrt{2} W_{2}=344 \\\sqrt{3} W_{1}-\sqrt{2} W_{2}=0\end{array}


A) W1=154.21lb;W2=125.91lb\mathrm { W } _ { 1 } = 154.21 \mathrm { lb } ; \mathrm { W } _ { 2 } = 125.91 \mathrm { lb }
B) W1=125.91lb;W2=154.21lb\mathrm { W } _ { 1 } = 125.91 \mathrm { lb } ; \mathrm { W } _ { 2 } = 154.21 \mathrm { lb }
C) W1=62.96lb;W2=77.11lbW _ { 1 } = 62.96 \mathrm { lb } ; W _ { 2 } = 77.11 \mathrm { lb }
D) W1=172lb;W2=210.66lbW _ { 1 } = 172 \mathrm { lb } ; W _ { 2 } = 210.66 \mathrm { lb }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions