Solved

Decide Whether the Expression Is or Is Not an Identity P=RI2\mathrm { P } = \mathrm { RI } ^ { 2 }

Question 242

Multiple Choice

Decide whether the expression is or is not an identity.
-The power dissipated in an electric circuit is given by the expression P=RI2\mathrm { P } = \mathrm { RI } ^ { 2 } , where R\mathrm { R } is the resistance of the circuit and I\mathrm { I } is the current through the circuit. For a sinusoidal alternating current, the current might be represented by the relation I=Asin(2πft) \mathrm { I } = \mathrm { A } \sin ( 2 \pi \mathrm { ft } ) , where A\mathrm { A } is the amplitude, f\mathrm { f } is the frequency, and t\mathrm { t } is time. Write an expression for P\mathrm { P } involving the sine function, and use a fundamental identity to write P\mathrm { P } in terms of the cosine function.


A) P=RAsin2(2πft) ;P=RARAcos2(2πft) P = R A \sin ^ { 2 } ( 2 \pi f t ) ; P = R A - R A \cos ^ { 2 } ( 2 \pi f t )
B) P=RA2sin2(2πft) ;P=RA2cos2(2πft) \mathrm { P } = \mathrm { RA } ^ { 2 } \sin ^ { 2 } ( 2 \pi \mathrm { ft } ) ; \mathrm { P } = - \mathrm { RA } ^ { 2 } \cos ^ { 2 } ( 2 \pi \mathrm { ft } )
C) P=RAsin2(2πft) ;P=RAcos2(2πft) P = R A \sin ^ { 2 } ( 2 \pi \mathrm { ft } ) ; P = R A - \cos ^ { 2 } ( 2 \pi f t )
D) P=RA2sin2(2πft) ;P=RA2RA2cos2(2πft) \mathrm { P } = \mathrm { RA } ^ { 2 } \sin ^ { 2 } ( 2 \pi \mathrm { ft } ) ; \mathrm { P } = \mathrm { RA } ^ { 2 } - \mathrm { RA } ^ { 2 } \cos ^ { 2 } ( 2 \pi \mathrm { ft } )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions