Solved

Solve the Equation for Exact Solutions VC=i2πfcos2πftV _ { C } = - \frac { i } { 2 \pi f } \cos 2 \pi f t

Question 237

Multiple Choice

Solve the equation for exact solutions.
-In the study of alternating electric current, capacitive voltage is given by VC=i2πfcos2πftV _ { C } = - \frac { i } { 2 \pi f } \cos 2 \pi f t where f is the number of cycles per second, i is the maximum current, and t is the time in seconds. Solve the equation for t.


A) t=2πfcos(2πfVci) t = 2 \pi f \cos \left( - \frac { 2 \pi f V c } { i } \right)

B) t=2πfarccos(2πfVci) t = 2 \pi f \arccos \left( - \frac { 2 \pi \mathrm { fVc } } { \mathrm { i } } \right)

C) t=12πfarccos(2πfVci) \mathrm { t } = \frac { 1 } { 2 \pi \mathrm { f } } \arccos \left( \frac { 2 \pi \mathrm { fVc } } { \mathrm { i } } \right)

D) t=12πfarccos(2πfVci) t = \frac { 1 } { 2 \pi f } \arccos \left( - \frac { 2 \pi f V c } { i } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions