Solved

Verify That the Equation Is an Identity y=4(cos2πxcosbt+sin2πxsinbt)y = 4 ( \cos 2 \pi x \cos b t + \sin 2 \pi x \sin b t )

Question 234

Multiple Choice

Verify that the equation is an identity.
-A vibrating wire has a vertical displacement given by y=4(cos2πxcosbt+sin2πxsinbt) y = 4 ( \cos 2 \pi x \cos b t + \sin 2 \pi x \sin b t ) . Assume b\mathrm { b } and t\mathrm { t } are constants. Write y\mathrm { y } as a cosine function of x\mathrm { x } .


A) y=8cos(2πx+bt) y = 8 \cos ( 2 \pi x + b t )
B) y=4cos(2πxbt) y = 4 \cos ( 2 \pi x - b t )
C) y=cos(2πxbt) y = \cos ( 2 \pi x - b t )
D) y=4cos(2πx+bt) y = 4 \cos ( 2 \pi x + b t )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions