Solved

Use the Properties of Logarithms to Rewrite the Expression log3(x8y46)\log _ { 3 } \left( \frac { x ^ { 8 } y ^ { 4 } } { 6 } \right)

Question 158

Multiple Choice

Use the properties of logarithms to rewrite the expression. Simplify the result if possible. Assume all variables represent
positive real numbers.
- log3(x8y46) \log _ { 3 } \left( \frac { x ^ { 8 } y ^ { 4 } } { 6 } \right)


A) (8log3x) (4log3y) ÷log36\left( 8 \log _ { 3 } x \right) \left( 4 \log _ { 3 } y \right) \div \log _ { 3 } 6
B) 8log3x+4log3ylog368 \log _ { 3 } x + 4 \log _ { 3 } y - \log _ { 3 } 6
C) 8log3x+4log3y+log368 \log _ { 3 } x + 4 \log _ { 3 } y + \log _ { 3 } 6
D) (log3x) 8+(log3y) 4log36\left( \log _ { 3 } x \right) ^ { 8 } + \left( \log _ { 3 } y \right) ^ { 4 } - \log _ { 3 } 6

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions