Solved

Give a Rule for the Piecewise-Defined Function f(x)={4 if x0x if x>0f ( x ) = \left\{ \begin{array} { l l } 4 & \text { if } x \leq 0 \\ - x & \text { if } x > 0 \end{array} \right.

Question 85

Multiple Choice

Give a rule for the piecewise-defined function. Then give the domain and range.
- Give a rule for the piecewise-defined function. Then give the domain and range. -  A)   f ( x )  = \left\{ \begin{array} { l l } 4 & \text { if } x \leq 0 \\ - x & \text { if } x > 0 \end{array} \right. ; Domain:  ( \infty , \infty )  , Range:  ( \infty , 0 )  \cup \{ 4 \}  B)   f ( x )  = \left\{ \begin{array} { l l } 4 & \text { if } x < 0 \\ - 4 x & \text { if } x \geq 0 \end{array} \right. ; Domain:  ( \infty , 0 )  \cup \{ 4 \} , Range:  ( \infty , \infty )   C)   f ( x )  = \left\{ \begin{array} { l l } 4 & \text { if } x < 0 \\ x & \text { if } x \geq 0 \end{array} \right. ; Domain:  ( \infty , 0 ] \cup ( 4 )  , Range:  ( \infty , \infty )   D)   f ( x )  = \left\{ \begin{array} { l l } 4 & \text { if } x < 0 \\ - x & \text { if } x \geq 0 \end{array} \right. ; Domain:  ( \infty , \infty )  , Range:  ( \infty , 0 ] \cup \{ 4 \}


A) f(x) ={4 if x0x if x>0f ( x ) = \left\{ \begin{array} { l l } 4 & \text { if } x \leq 0 \\ - x & \text { if } x > 0 \end{array} \right. ; Domain: (,) ( \infty , \infty ) , Range: (,0) {4}( \infty , 0 ) \cup \{ 4 \}
B) f(x) ={4 if x<04x if x0f ( x ) = \left\{ \begin{array} { l l } 4 & \text { if } x < 0 \\ - 4 x & \text { if } x \geq 0 \end{array} \right. ; Domain: (,0) {4}( \infty , 0 ) \cup \{ 4 \} , Range: (,) ( \infty , \infty )
C) f(x) ={4 if x<0x if x0f ( x ) = \left\{ \begin{array} { l l } 4 & \text { if } x < 0 \\ x & \text { if } x \geq 0 \end{array} \right. ; Domain: (,0](4) ( \infty , 0 ] \cup ( 4 ) , Range: (,) ( \infty , \infty )
D) f(x) ={4 if x<0x if x0f ( x ) = \left\{ \begin{array} { l l } 4 & \text { if } x < 0 \\ - x & \text { if } x \geq 0 \end{array} \right. ; Domain: (,) ( \infty , \infty ) , Range: (,0]{4}( \infty , 0 ] \cup \{ 4 \}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions