Solved

Consider the Function H as Defined h(x)=3x2+8h ( x ) = \frac { 3 } { x ^ { 2 } } + 8

Question 155

Multiple Choice

Consider the function h as defined. Find functions f and g so that (f  g) (x) = h(x) .
- h(x) =3x2+8h ( x ) = \frac { 3 } { x ^ { 2 } } + 8


A) f(x) =3x2,g(x) =8f ( x ) = \frac { 3 } { x ^ { 2 } } , g ( x ) = 8
B) f(x) =x,g(x) =3x+8f ( x ) = x , g ( x ) = \frac { 3 } { x } + 8
C) f(x) =x+8,g(x) =3x2f ( x ) = x + 8 , g ( x ) = \frac { 3 } { x ^ { 2 } }
D) f(x) =1x,g(x) =3x+8f ( x ) = \frac { 1 } { x } , g ( x ) = \frac { 3 } { x } + 8

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions