Solved

Consider the Function H as Defined h(x)=108x+8h ( x ) = \frac { 10 } { \sqrt { 8 x + 8 } }

Question 104

Multiple Choice

Consider the function h as defined. Find functions f and g so that (f  g) (x) = h(x) .
- h(x) =108x+8h ( x ) = \frac { 10 } { \sqrt { 8 x + 8 } }


A) f(x) =10x,g(x) =8x+8f ( x ) = \frac { 10 } { x } , g ( x ) = 8 x + 8
B) f(x) =8x+8,g(x) =10f ( x ) = \sqrt { 8 x + 8 } , g ( x ) = 10
C) f(x) =10,g(x) =8+8f ( x ) = 10 , g ( x ) = \sqrt { 8 + 8 }
D) f(x) =10x,g(x) =8x+8f ( x ) = \frac { 10 } { \sqrt { x } } , g ( x ) = 8 x + 8

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions