Solved

Give a Rule for the Piecewise-Defined Function f(x)={5 if x23 if x>1f ( x ) = \left\{ \begin{array} { c l } - 5 & \text { if } x \leq - 2 \\ 3 & \text { if } x > 1 \end{array} \right.

Question 101

Multiple Choice

Give a rule for the piecewise-defined function. Then give the domain and range.
- Give a rule for the piecewise-defined function. Then give the domain and range. -  A)   f ( x )  = \left\{ \begin{array} { c l } - 5 & \text { if } x \leq - 2 \\ 3 & \text { if } x > 1 \end{array} \right. ; Domain:  \{ - 5,3 \} , Range:  ( \infty - 2 ] \cup ( 1 , \infty )   B)   f ( x )  = \left\{ \begin{array} { c l } - 5 & \text { if } x < - 2 \\ 3 & \text { if } x \geq 1 \end{array} \right. ; Domain:  ( \infty - 2 )  \cup [ 1 , \infty )  , Range:  \{ - 5,3 \}  C)   f ( x )  = \left\{ \begin{array} { c l } - 5 & \text { if } x \leq - 2 \\ 3 & \text { if } x > 1 \end{array} \right. ; Domain:  ( \infty - 2 ] \cup ( 1 , \infty )  , Range:  \{ - 5,3 \}  D)   f ( x )  = \left\{ \begin{array} { c l } - 5 & \text { if } x < - 2 \\ 3 & \text { if } x \geq 1 \end{array} \right. ; Domain:  \{ - 5,3 \} , Range:  ( \infty - 2 )  \cup [ 1 , \infty )


A) f(x) ={5 if x23 if x>1f ( x ) = \left\{ \begin{array} { c l } - 5 & \text { if } x \leq - 2 \\ 3 & \text { if } x > 1 \end{array} \right. ; Domain: {5,3}\{ - 5,3 \} , Range: (2](1,) ( \infty - 2 ] \cup ( 1 , \infty )
B) f(x) ={5 if x<23 if x1f ( x ) = \left\{ \begin{array} { c l } - 5 & \text { if } x < - 2 \\ 3 & \text { if } x \geq 1 \end{array} \right. ; Domain: (2) [1,) ( \infty - 2 ) \cup [ 1 , \infty ) , Range: {5,3}\{ - 5,3 \}
C) f(x) ={5 if x23 if x>1f ( x ) = \left\{ \begin{array} { c l } - 5 & \text { if } x \leq - 2 \\ 3 & \text { if } x > 1 \end{array} \right. ; Domain: (2](1,) ( \infty - 2 ] \cup ( 1 , \infty ) , Range: {5,3}\{ - 5,3 \}
D) f(x) ={5 if x<23 if x1f ( x ) = \left\{ \begin{array} { c l } - 5 & \text { if } x < - 2 \\ 3 & \text { if } x \geq 1 \end{array} \right. ; Domain: {5,3}\{ - 5,3 \} , Range: (2) [1,) ( \infty - 2 ) \cup [ 1 , \infty )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions